Joint Belief and Intent Prediction for Collision Avoidance in Autonomous Vehicles
نویسندگان
چکیده
This paper describes a novel method for allowing an autonomous ground vehicle to predict the intent of other agents in an urban environment. This method, termed the cognitive driving framework, models both the intent and the potentially false beliefs of an obstacle vehicle. By modeling the relationships between these variables as a dynamic Bayesian network, filtering can be performed to calculate the intent of the obstacle vehicle as well as its belief about the environment. This joint knowledge can be exploited to plan safer and more efficient trajectories when navigating in an urban environment. Simulation results are presented that demonstrate the ability of the proposed method to calculate the intent of obstacle vehicles as an autonomous vehicle navigates a road intersection such that preventative maneuvers can be taken to avoid imminent collisions.
منابع مشابه
Intent-Estimation- and Motion-Model-Based Collision Avoidance Method for Autonomous Vehicles in Urban Environments
Existing collision avoidance methods for autonomous vehicles, which ignore the driving intent of detected vehicles, thus, cannot satisfy the requirements for autonomous driving in urban environments because of their high false detection rates of collisions with vehicles on winding roads and the missed detection rate of collisions with maneuvering vehicles. This study introduces an intent-estima...
متن کاملA ’Cognitive Driving Framework’ for Collision Avoidance in Autonomous Vehicles
The Cognitive Driving Framework is a novel method for forecasting the future states of a multi-agent system that takes into consideration both the intentions of the agents as well as their beliefs about the environment. This is particularly useful for autonomous vehicles operating in an urban environment. The algorithm maintains a posterior probability distribution over agent intents and belief...
متن کاملA Comparative Study of Collision Avoidance Algorithms for Unmanned Aerial Vehicles: Performance and Robustness to Noise
Over the past years, the field of small unmanned aerial vehicles has grown significantly and several applications have appeared, requiring always more autonomous flight. An important remaining challenge for fully autonomous unmanned aerial vehicles is collision avoidance between aircraft. In this work, we will compare two collision avoidance algorithms in terms of performance and robustness to ...
متن کاملObstacle avoidance for an autonomous vehicle using force field method
This paper presents a force field concept for guiding a vehicle at a high speed maneuver. This method is similar to potential field method. In this paper, motion constrains like vehicles velocity, distance to obstacle and tire conditions and such lane change conditions as zero slop condition and zero lateral acceleration are discussed. After that, possible equations as vehicles path ar...
متن کاملEffectiveness and driver acceptance of a semi-autonomous forward obstacle collision avoidance system.
This paper proposes a semi-autonomous collision avoidance system for the prevention of collisions between vehicles and pedestrians and objects on a road. The system is designed to be compatible with the human-centered automation principle, i.e., the decision to perform a maneuver to avoid a collision is made by the driver. However, the system is partly autonomous in that it turns the steering w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1504.00060 شماره
صفحات -
تاریخ انتشار 2015